Utilização de redes neurais convolucionais e imagens obtidas por RPA para o mapeamento de palmeiras na Amazônia Ocidental
Mauro Alessandro Karasinski
Defesa Pública: 15 de abril de 2021
Banca Examinadora:
Prof. Dr. Matheus Pinheiro Ferreira – IME – Primeiro Examinador
Dr. Evandro Orfanó Figueiredo – Embrapa/Acre – Segundo Examinador
Profª. Dra. Ana Paula Dalla Corte – UFPR – Terceira Examinadora
Prof. Dr. Henrique Soares Koehler – UFPR/UNICENTRO – Orientador e Presidente da Banca Examinadora
Resumo:
As palmeiras (Arecaceae) são um dos recursos mais importantes do ponto de vista social e econômico para as comunidades locais na Amazônia, porque garantem rendimentos e oferecem recursos como alimentos e matéria-prima para a construção, artesanato e indústria. A complexidade das florestas amazônicas limita a obtenção de informações cruciais para a exploração e gestão comercial das palmeiras, tais como a densidade e distribuição espacial. Em vista disso, neste estudo avaliou-se o desempenho da Rede Neural Convolucional YOLOv4 para a detecção e classificação automática das palmeiras nas florestas tropicais nativas. O estudo foi realizado num remanescente de Floresta Ombrófila Aberta no sudoeste da Amazônia. Primeiramente foi gerada uma ortofoto RGB a partir de imagens obtidas com uma aeronave remotamente pilotada. Em seguida, a ortofoto foi subdividida em 960 parcelas de 37,5 x 37,5 metros. Foram rotuladas, manualmente, 1098 palmeiras identificadas por fotointerpretação pertencentes a quatro espécies de palmeiras: Attalea butyracea (Mutis ex L.f.) Wess. Boer, Euterpe precatoria Mart., Iriartea deltoidea Ruiz & Pav e Oenocarpus bataua Mart. Realizou-se um aumento de dados para elevar a capacidade de aprendizagem do modelo. Selecionou-se aleatoriamente 80% dos dados para treinamento e 20% dos dados para validação. Para fazer as previsões da localização e classificação das palmeiras, a Rede Neural Artificial para a detecção de objetos YOLOv4 foi utilizada. O método alcançou precisão média geral de 91,08% e a precisão média para A. butyracea, E. precatoria, I. deltoidea e O. bataua foi 92,07% ±2,85%; 96,2% ±1,48%; 93,83% ±3,09% e 92,48% ±2,82%, respectivamente. O YOLOv4 é uma ferramenta efetiva para o mapeamento das palmeiras em florestas nativas, podendo ser utilizada no âmbito do planejamento e manejo florestal.